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$ Institute for Theoretical Physics, University of Utrecht, Princetonplein 5 ,  3584 CC 
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Abstract. Bifurcations of cubic nonlinear symplectic mappings in two and four dimensions 
are discussed. Orbits and types of bifurcations have been the subject of the preceding 
paper. Here series of bifurcations are studied by direct numerical calculation and by a 
renormalisation procedure. It is shown that for period-doubling bifurcations one finds 
the universal exponent of the quadratic area-preserving map. Other exponents exist for 
higher multiplicities. The renormalisation transformation has a fixed line in parameter 
space with an end point. The latter implies that series of period-doubling bifurcations 
may break off. 

1. Introduction 

In the last few years much interest has been paid to bifurcations of nonlinear maps, 
especially dissipative ones in one and two dimensions and area-preserving ones in 
two dimensions. The main part of these studies was devoted to the universal behaviour 
of period-doubling bifurcations (Feigenbaum 1978, 1979, Collet and Eckmann 1980, 
Bountis 1981, Greene et a1 1981, Helleman 1980, Bak and Hoegh Jensen 1982, 
Janssen and Tjon 1982a (to be referred to as 11)), but bifurcations with higher 
multiplicity have also been studied (Derrida and Pomeau 1980, 11). In the preceding 
paper (Janssen and Tjon 1983, to be referred to as I) we have studied two- and 
four-dimensional symplectic mappings, which have their origin in a model in crystal 
physics (Janssen and Tjon 1981, 1982b). 

The two- and four-dimensional mappings are given by 

(1.1) 3 U = (x,,xfl-l)+Su =((a -2)x, + X ,  -xfl-l,xfl) 

U = (Xntl, xfl, x"-l, X f l - z ) + S U  = (xfl+2, Xfl+l, xfl, xfl-1) 

and by 

(1.2) 
where 

X"+2  = (2 --(y - 3S)(Xn/6) - ( x m  - [2 - (l/S)I(Xfl+l + X " - d  -x,,-2 + c (1.3) 
for some constant c which will be taken to be zero in the following. 

The orbits and bifurcations of these mappings have been discussed in I. It has 
been shown in a number of examples that one can distinguish several types of 
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bifurcations. There are three types in which new fixed points originate from a parent 
one, whereas the character of the latter changes. 

Type ( a ) ,  A pair of eigenvalues of the linearised mapping moves over the unit 
circle in the complex plane, reaches A = +1 and continues along the real axis; a new 
fixed point is created of the same order. 

Type (b). A pair of eigenvalues reaches A = -1 and continues along the real axis; 
a new fixed point is created with double the order. 

Type (c). Two pairs of eigenvalues collide and leave the unit circle at A = 
exp(*2ris/N) with s and N integers; new fixed points are created with the N-fold 
period. 
There are two types where the eigenvalues reach A = exp(*2~is /N)  but stay on the 
unit circle. 

Type ( d ) .  Two or more new fixed points originate from the parent one with N 
times the original period; this is called Birkhoff bifurcation. 

Type ( e ) .  In the neighbourhood of a fixed point 2 N  new fixed points are created; 
N of them move away and bifurcate again, the other N move towards the parent 
fixed point, collide for the value of the parameter for which A = exp(*2ris/N) and 
bounce back. 
In I only the types of bifurcations were discussed. Often these occur in infinite 

series which have a geometric character. This is also the case for the four-dimensional 
mapping. In this paper we study in some detail the period-doubling bifurcations and 
evidence is given that the characteristic exponents are the same for both mappings. 
Iil § 2 we discuss infinite series of bifurcations, mainly period-doubling ones in four 
dimensions. The limiting behaviour can be studied using a renormalisation type of 
approach. In this way the universality of the exponents with respect to the dimensional- 
ity of the map can be understood. This is done in 5 3 .  

2. Series of bifurcations 

In I we discussed several types of bifurcations. Very often these bifurcations follow 
each other in series: if new cycles are created at a bifurcation these may bifurcate in 
turn and so on. In this respect there is a large difference from the one-dimensional 
map, where nearly every point in the unit interval is attracted to one cycle. In the 
two- and four-dimensional maps more and more cycles appear of different order for 
decreasing a. The domain of each cycle, i.e. the region in R * or R4 where the motion 
is approximately described by the linearisation, may vary from cycle to cycle, but for 
sufficiently low values of a there is an infinite number of cycles in the plane with 
wildly varying values of period and winding number. 

Feigenbaum (1978, 1979) has observed for the one-dimensional map that the 
period-doubling bifurcations occur very often in series and that the values of the 
parameter for which the bifurcation takes place form a geometric series. Moreover, 
he found that the rate of this series is a universal constant independent of the specific 
map. An analogous behaviour has been found for the area-preserving map of the 
plane. Also here there is a universal exponent for period-doubling bifurcations, 

In I1 we have discussed two series of period-doubling bifurcations for S = 0: one 
starts from the non-trivial FP N = 1 which exists for a <-2, the other starts via a 
bifurcation of type ( e )  from the solution with period N = 2 at a = -1. If a,  is the 
value of a for which the eigenvalue of the cycle with period N = 2” becomes A = -1 
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and a bifurcation of type ( b )  takes place, one can define (following Feigenbaum) 

a n + l - a n  

a n + 2 - a n + l  
“In = 

and one finds that 7, tends to = 8.721 . . . for n + 00. For S # 0 one finds series of 
period-doubling bifurcations that are obtained smoothly from those at S = 0. A 
number of series of bifurcations is given in table 1 which shows that the rate of the 
geometric series is in agreement with the value for the two-dimensional map, which 
is a universal constant as shown by Eckmann (private communication). (For the first 
two series in table 1 only periods up to N = 32 are given. The solutions of longer 
period are difficult to find numerically, because the third eigenvalue goes to infinity.) 

Table 1. Series of period-doubling bifurcations. am is the value for which two eigenvalues 
of the N = 2“‘ cycle become - 1 ;  11, is the ratio (6.1). 

N 

2 
2 
4 
8 

16 
32 
64 

128 

6 = 0.45 6 = 1.0 6 = 3.059 

f f m  Tm f f m  T m  f f m  

-0.65 - 
-1.21508 - -7.196 1 - -4.059 
-1.317 53 5.52 -7.243 108 - -4.312 783 
-1.329 484 8.570 -7.252 143 4 5.20 --4.463 779 7 
-1.330 856 9 8.707 -7.253 223 85 8.36 -4.480 507 09 
-1.331 014 3 8.721 -7.253 348 147 8.69 -4.482 388 61 

-4.482 607 742 
-4.482 632 643 6 

T m  

- 
1.681 
9.027 
8.890 
8.586 
8.800 

In the limit of S + 0 the orbits in R4 are related to those for S = 0. Another value 
of S for which the mapping is essentially two-dimensional is S = 0.5. For this value 
it is easily seen from equation (1.3) that the chain {x,} consists of two subchains: those 
of the odd and those of the even positions. When there is a bifurcation series for the 
mapping in R 2  with bifurcation points a k, then there is a corresponding bifurcation 
series for S = 0.5 with a ,  = ;(a:, - 1). Such a bifurcation series exists already if one 
of the two subchains has one. This means that one such series can give rise to several 
for S = 0.5. The value am = -1.63 . . . found for S = 0.5, for example, corresponds to 
the value am = -2.27 . . . at S = 0 (cf 11). Actually there are several solutions with the 
same subchain. Therefore the point a = -1.63 . . . , S = 0.5 is a point where a number 
of lines a = a,(S) cross. If S f 0.5 this degeneracy is lifted. 

An essential difference between the two- and four-dimensional mappings is that 
for the latter a series of bifurcations may terminate because the eigenvalues of the 
bifurcated cycle do not reach the same position on the unit circle as those of the 
parent cycle at the bifurcation, but leave the unit circle earlier. This is the reason 
why the period-doubling sequence of table 1 does not continue indefinitely for S > 4.5. 

Series of bifurcations also exist from just one cycle, instead of from the succes- 
sively bifurcated cycles. Consider as an example the cycle of period N = 4 with {x, = 
a,  a ,  -a, -a}  for S = 0 ( a 2  = 2 - a ) .  For a = 1 this cycle has an eigenvalue A = +l;  for 
a = a ,  = 1 + cm a series of bifurcations takes place to cycles with periods N ‘  = 4 x 2“. 
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For m tending to CO, one can approximate am by 

Hence the rate of this geometric series is four. Another series with the same rate and 
periods N = 4" is given in table 2. The situation here is a succession of bifurcations 
of type ( d ) .  If for a given value of a and S there is an eigenvalue exp(2ris lN) where 
s is the winding number, a new fixed point of order 4 N  may bifurcate. The orbit 
resembles that of one with period equal to the nearest integer to N/s. For the second 
example in table 2 this is the series Nls = 4, 3, E ,  85, 341, etc, which tends to 3. 
The corresponding values of a, tend to the value of a for which the bifurcation with 
A = exp($ri) takes place, i.e. a = 1.5. In this case it can easily be shown analytically 
that these values of a, form a geometric series with rate 4 (see appendix). 

16 64 256 1024 

Table 2. Two series of bifurcations for 6 = 0. Both series correspond to antisymmetric 
solutions and depart from the N = 4 cycle x, = (a, a, -a, -a ) .  a ,  is the value for which 
the period 4p"(p = 2 ,4 )  has an eigenvalue A = -1 .  

First series Second series 

m N a m  TI, N a m  T)m 

4 1.292 9 
8 1.076 123 9 

16 1.019 215 0 
32 1.004 815 4 
64 1.001 204 55 

128 1.000 301 19 
1.0 

~~ ~~~ ~ 

- 4 1.617 32 - 
16 1.528 604 

3.81 64 1.507 102 4.126 1 
3.95 256 1.501 772 3 4.034 1 
3.988 1024 1.500 442 88 4.009 0 
3.998 
4 1 .5  4 

- - 

If one considers one series of period-doubling bifurcations for S f 0 the accumula- 
tion point for the values am can be denoted by am(S).  Because the solutions depend 
smoothly on S one obtains a line in the a, S plane which we call the critical line. The 
values of a for which the cycle of period 2" bifurcates into a cycle of period 2"+' 
are also situated on smooth lines a,(S) which approach the critical line geometrically. 
The interesting fact is that the rate of the geometric series does not depend on S. 
For S = So + E one has the relation 

where c1 and c2 are constants. The qualitative behaviour of such a critical line is 
sketched in figure 1. For any direction intersecting this critical line the bifurcations 
form a geometric series with the same exponent. However, depending on the condi- 
tions, the convergence may be very different. Two examples are given in table 3. 
One series proceeds along a straight line, the other connects the bifurcation points 
for which the cycle of period N = 2" has two eigenvalues A = +1 and two eigenvalues 
A = -1 and a cycle of period N' = 2"'+' is created. These values am, S ,  should form 
also a geometric series with a rate 8.7.  The convergence of the second series, however, 
is much slower than that of the first. 
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6 
0 2 3 

Figure 1. The first few curves a,(S)  on which one of ..e eigenvalues of DS” for N = 2’ 
has the value -1. The curves approach the critical curve a,(S) geometrically. The asterisks 
indicate the fixed points of the renormalisation transformation (8 3). The FP near a = -4.5, 
S = 3 is an end point of the critical line. The sharp bend is the cross-over at 8 = 0.25 
from series starting with an N = 2 configuration {a, b} to one starting from (a. - a ) .  

Table 3. Two series of period-doubling bifurcations converging to the same a ,  S values: 
(a)  along a = a,-2.7(6 - a c ) ;  ( b )  the points where A I  = A I  = -1, h 3  = h4 = +I. 

(a )  a =ac-2.7(6-S,)  

N a, Sm Vflrn 

4 -4.151 034 2.937 797 - 
8 -4.448 428 3.047 943 - 

16 -4.482 893 8 3.060 708 4 6.629 
32 -4.486 797 68 3.062 154 29 6.829 
64 -4.487 252 766 3.062 322 848 8.578 

128 -4.487 304 474 6 3.062 342 000 8.801 
256 -4.487 310 435 79 3.062 344 207 6 8.674 
5 12 -4.487 311 117 185 3.062 344 459 96 8.749 

( b )  h l = - l , h j = + l  

N am 6, ) Im 

4 -3.657 5 2.552 4 - 
8 -4.429 608 9 3.034 371 - 

16 -4.478 858 86 3.057 820 15.67 
32 -4.486 464 53 3.061 916 6.47 
64 -4.487 207 818 3.062 290 7 10.23 

128 -4.487 301 482 8 3.062 339 86 7.94 
256 -4.487 311 582 86 3.062 345 029 9.27 
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3. Renormalisation calculation 

To study the exponents of the geometric series one can also use a generalisation of 
the renormalisation group approach first suggested by Derrida and Pomeau (1980). 
Consider a series of period-doubling bifurcations along a line in the a ,  S plane. If 
am, 8, are the values of the parameters for which a cycle of period N = 2" bifurcates 
and gives a cycle of period N' = 2,+', the values am, 6, form a geometric series which 
has the point am, S ,  as a limit. The eigenvalues A i  depend smoothly on the parameters, 
if one stays with the same solution, or its bifurcates at the bifurcation points. We 
denote the eigenvalues of DS2" for one specific series of solutions by h i (m,  a,  6). 
Because the bifurcations are of type ( 6 )  one has 

h l (m,  a,, 6,) = -1. (3.1) 

In the neighbourhood of am, S, the other eigenvalues A 3  and h 4  do not change rapidly. 
So one has only the effect of the doubling of the period: 

(3.2) 
This means that we are looking for bifurcations at points in parameter space where 
the character of all eigenvalues is the same. Starting from an arbitrary value of a ,  S 
in the neighbourhood of am, Sm one can determine a series a,  S +a( ' ) ,  S"'+ 
a('), 6'" . . . by 

b ( m ,  a m ,  SmIZSA3(m + 1, am+l,  a m c l ) .  

Al(m, a"), 8'"') = Al(m + 1, a , a(m+l)) (3.3) 
A3(m, a'"',  S'")' = A 3 ( m  + 1, a"+", ~ 3 ( ~ + ' ) ) .  

This series will converge towards am, S a .  One can approximate this mapping by a 
mapping from a ,  S to a ' ,  S' defined by 

Al(m, a,  6) = Al(m + 1,  a ' ,  8') 

h3(m, a,  a)'= h3(m + 1,  a ' ,  8') 
(3.4) 

for a fixed value of m. We are considering here only one family of solutions. For a 
different family, even with the same periods and winding numbers, the transformation 
in parameter space may be quite different. This mapping is a kind of renormalisation 
transformation. The values a,, 8, can be approximated by the fixed points (FP) of 
this transformation. 

Numerically one can search for FP of the transformation (3.4). We have performed 
the calculation for m = 2 and m = 3 (see table 4). One FP for m = 3 (other values are 
given in table 4) in a series starting from the antisymmetric solution with period 2,  

Table 4. The fixed points of the transformation (3.12) for different values of M in one 
family of solutions and the eigenvalues of the linearised transformation around the fixed 
points. 

N N '  m a 6 t) 1' t);' 

8 16 3 -4.414 1 3.052 7 7.98 4.19 
16 32 4 -4.488 230 1 3.063 0 1  8.98 3.91 

4 8 2  -1.637 255 2 0.5 8.420 0.928 
8 16 3 -1.637 251 5 0.5 8.721 1.000 
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where its eigenvalue is -1, is 

(Y, -1.637 25 8, = 0.5. (3.5) 
In this family the eigenvalue A 3  goes to infinity if m increases. Linearisation of the 
renormalisation transformation gives a linear mapping from a,+ ha, S , +  A8 to a,+ 
Aa' ,  8, + A8' with 

(3.6) 

where R can be expressed in terms of the derivatives of the eigenvalues A l  and A 3  
for 111 = 2" and A '1 and A i  for N '  = 2"+': 

R = R1R;' (3.7) 
with 

The eigenvalues of R for the FP given in (3.5) are 7;' = 118.727 . . . and 72 = 1.0000. 
This means that the line tangent to the eigenvector of 7 = 1 is a fixed line. The reason 
is that the points of the line a = a,(S) satisfy the equation 

(3.8) 

in the limit of m + 00. So for large m the renormalisation transformation maps every 
point of the critical line to a point on this line. Since in this case the second condition 
in equation (3.4) is automatically satisfied the criticaline is left invariant point-wise. 
This is equivalent to the statement that a A 3 / a a  = aJh ; / aa  and similarly for 8, because 
then R has an eigenvalue +1. The eigenvalue 71' corresponds to the exponent 
already known for the two-dimensional mapping. 

Al(m, a,  S )  = Al(m + 1, a,  8) 

Two other FP of the renormalisation transformation are 

a,= -1.084 5 9 3 . .  . 
-2.274 5 1 5 . .  . 

8, = 0 

8, = 0. 
(3.9) 

These points correspond to the FP of two renormalisation transformations for two 
different families of solutions, starting from a = -1 and a = -2, respectively, along 
the a axis for the two-dimensional mapping 

A (m,  a ,  0) = A  (m + 1, a ' ,  0'). (3.10) 

This can be seen from the fact that if S tends to zero, one eigenvalue of a FP goes to 
infinity as a-"-', whereas another eigenvalue tends to the eigenvalue of the two- 
dimensional mapping. In I1 we have shown that the values (3.9) are the limiting values 
am for a series of period-doubling bifurcations. 

Another series of period-doubling bifurcations is obtained if one considers the 
values of a and S for which 

(3.11) Al(m, a m ,  a m )  = -1 A3(m, a,, 6,) = + l .  
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This is a series for which ,I3 = A ;  at the bifurcation points. One can approximate the 
values of a, and S ,  by the FP of the renormalisation transformation (3.4). One finds 
a FP for a = -4.449. . , , 6 = 3.035 . , . . The eigenvalues of the linearised renormalisa- 
tion transformation are 9 . 0 . .  . and 1 . 0 . .  . . The latter implies that the critical line is 
also a fixed line here. This critical line runs from this FP via the FP (3.5) to one at 
S = 0.25. The fact that numerically one finds FP and not a fixed line is due to the 
approximation made. The existence of a (point-wise) fixed line explains why the other 
exponent is universal: there is only one relevant parameter. 

A numerically more practical way to find the FP more precisely is one based on 
the observation that it is also a FP of another transformation: 

k = 1 ,  . . . ,  4. (3.12) 

We have determined the FP for m = 3 and m = 4 numerically (table 4). For m = 4 a 
FP is 

(3.13) 

The eigenvalue h 3  now tends to one as m tends to infinity. Linearising the renormalisa- 
tion transformation around ac, S ,  gives the eigenvalues v i 1  and eigenvectors of R : 

aC = -4.488 230 1 . . . 6 ,  = 3.063 01 . . . . 

~ 1 ~ 8 . 8 9  . . .  
~ z = 3 . 9 1 . .  . 

eigenvector: (-2.68, 1)  

eigenvector: (-1.39, 1). 
(3.14) 

The first exponent is consistent with the universal exponent 8 . 7 2 . .  . , although the 
error is still rather large. The direct calculation varying a,  S along a straight line gives 
better agreement (table 3). The critical line a =a,(S) is again a solution of 
h l ( m ,  a, S )  = -1 in the limit of m +a. Hence this line is an invariant line, along 
which no period-doubling bifurcations take place. At the FP the critical line is tangent 
to the second eigenvector. The motion of the points on the line is governed by a 
different exponent which is approximately equal to four. 

The above results suggest that the period-doubling bifurcations in R4 can also be 
described by the universal exponent of 8.721 . . . for the rate of the geometric series. 
This is not so surprising in the neighbourhood of S = 0 and S = 0.5 where the mapping 
is nearly two-dimensional. For other values of 8, although each FP of the renormalisa- 
tion group transformation has more than one exponent, only one is relevant for the 
bifurcation; the other one describes the motion along the critical line. 

4. Concluding remarks 

The cubic mapping in two and four dimensions shows a large number of geometric 
series of bifurcations, where the period of a solution becomes a multiple of the original 
one. In I1 we considered some of the series of bifurcations with N = up" ( m  = 1,2 ,  . . .) 
for S = 0. It was shown that (i) these bifurcations give also a geometric series for the 
values of a at which the bifurcations take place, (ii) the rate of the geometric series 
is, in general, different from that for the period-doubling series, (iii) the rate depends 
not only on the multiplicity p of the bifurcation but also on the specific series. Since 
the solutions depend smoothly on a and S one may expect that the values for 
higher-order bifurcations found for S = 0 should also apply to the case 6 # 0 but we 
did not investigate this point thoroughly. 
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The universality of the exponent for period-doubling bifurcations can be under- 
stood for the present mapping from the existence of a critical line in the parameter 
space which is a fixed line for a renormalisation transformation where the fixed points 
are the accumulation points of Feigenbaum sequences. Since the critical line is 
point-wise fixed only one exponent is relevant. As a special feature in our model, 
this critical line has an end point: for a large enough value of the parameter S ,  series 
of period-doubling bifurcations break off. This is because the nonlinear terms are 
less important for large S .  

Appendix 

Here we consider series of bifurcations at S = 0 from the N = 4 cycle {xn = a, a, -a, - a }  
where a 2  = 2 -a ,  A bifurcation of type ( d )  may take place if the eigenvalue of DSN 
is exp(2rislp). Then a cycle with period N = 4p may branch off. Now we consider 
a series of rational numbers s / p  =sm/pm. This gives a series of bifurcations from 
N = 4 to N = 4pm. Suppose now that the series sm/pm converges to the rational number 
k/l in a geometric way: 

sm/pm = k / l  +AB-". (All  
The eigenvalues of DS4 are determined by its trace: 

T = 2  COS 4 = (4-2a)4-4(4 -2a) '+2. (A21 
If 4" = 2mmp-" then (A2) determines the values a ,  for which the bifurcation takes 
place and q5 = 2rk/l determines the accumulation point am. For small values of A8-" 
one may write am = am + E" and 

2 cos4,-2 s i n 4 A K "  = T(am)+~m[4(4-2a,)~-8(4-2a,)]. (A3) 

If sin 4o # 0 this gives an expression for em : 

which means that the values of a ,  converge towards am with a rate 8. As an example 

with rate 8 = 4 and A = -4. Hence the bifurcation points converge towards a m  = 1.5 
with rate 4. The orbits look more and more like that for period 3 x 4. 

If sin do = 0, one has to take into account higher-order terms in the expansion: 

consider the series smp-" = (4" - 1) / (3  x 4") =,s, 1 E, 5 21 4, m. 85 . . converging to k / l  = 4 

2 C O S ~ , - ( A ~ - " ) ~ -  T(a,)+~,[4(4-2tv)'-8(4-2a,)]. (A5) 
Hence am converges in this case to am with rate e2. An example of this situation is 
SmP-" - -' 2, 4r ' 8, , . , converging to zero. Then am = 2 or 1 and a ,  converges to one of 
these values with rate 22 = 4. 
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